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Abstract. A convolution technique is proposed for the calculation of local densities of states
(LDOS) within the tight-binding (TB) model. It relies on the separability of the variables in the
Hamiltonian. This technique allows one to carry out calculations for the two- and three-dimensional
lattices if the one-dimensional LDOS is known. The approach avoidsK-space integration as well
as the processing of large clusters. The results are checked against known results produced by the
straight TB model, and some new cases, such as that of the LDOS for a two-dimensional lattice in
the presence of an external electric field, are also considered.

1. Introduction

The local density of states (LDOS) is one of the most characteristic features of any quantum
system [1, 2]. Usually the calculation of the LDOS for one-dimensional model crystals poses no
problems, but for two or three dimensions the calculations may become cumbersome [1, 2]. The
tight-binding approximation which accounts for an interaction restricted to the first neighbours
allows an analytical solution for a chain of atoms with one orbital each (the one-band one-
dimensional model) [3] to be obtained. For two or three dimensions, even for simple cubic
structures the TB model has to be evaluated numerically [4–6] and various fast computational
schemes have been considered for the purpose [7]. The case with imperfect periodicity in
some direction has to be considered in many instances [5, 6], e.g. when a constant electric
field is applied to a solid, producing the well known Wannier–Stark effect. For the simplest
case of this effect, an infinite one-dimensional chain, the analytical solution for the LDOS was
obtained recently [3]. A generalization of this result in two and three dimensions for one- or
two-band TB models would be an interesting step. There are various approaches to computing
the LDOS for crystals in the TB approximation, but two of them are especially popular. The
first one relies on periodicity and uses integration over the Brillouin zone. Such an integration
is usually carried out numerically and depends on choosing some selected points or subdividing
the zone in an appropriate manner [4, 6]. The other commonly used alternative for obtaining
the LDOS is the so-called cluster approximation [4, 6]. The matrix of the Hamiltonian for
a sufficiently large one-, two- or three-dimensional cluster is diagonalized and a histogram
of its eigenvalues is used to approximate the LDOS [4, 6]. The size of the matrix increases
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with the number of atoms and, even with a good algorithm for the eigenvalues, this method is
time consuming. However, the cluster approach does not need periodicity in all of the spatial
directions [5, 6].

Here we propose a new approach to LDOS calculations in two or three dimensions for the
TB model of simple cubic crystals. The idea is to utilize the separability of the Hamiltonian,
which allows one to perform a convolution of the one-dimensional result with the LDOS for
one or two dimensions so as to obtain the result for the case with a higher dimensionality.
This way of proceeding avoids both the huge matrices of the cluster approximation and the
awkward integration over the Brillouin zone. As was pointed out, obtaining the LDOS in the
TB model for one dimension is not a problem: for the one-dimensional one-band case the
analytic solution is known [3] and for two bands the numerical calculation is fairly easy [8].
Our approach has been implemented for two- and three-dimensional one- or two-band crystals
in order to compare its merits with those of the already known methods. The investigation has
been extended to the calculation of the LDOS in two dimensions in the presence of an external
electric field. The results concerning the Wannier–Stark effect in two-dimensional crystals are
a further generalization of the analytical results obtained recently [3] for the one-dimensional
one-band case.

2. Model and method

We consider within the TB model a simple cubic crystal with a dimensionalityD and first
neighbours. For a one-band case the Hamiltonian of a one-electron system can be written
as a sum of commutating operatorsH = Hxi , i = 1, . . . , D. In this case the spectrum
of eigenvalues is a sum of the eigenvalues of eachHxi , and their overall distribution is a
‘convolution’ or a ‘composition’ [9]. This formulation suggests that the one-dimensional
LDOS of a chain can be used as an operator that increases the dimensionality of the solution:

ρ(D)(E) =
∫ ∞
−∞

ρ(D−1)(ε)ρ(1)(E − ε) dε.

The trivial case in whichD − 1 = 0 is indeedρ(0)(ε) = δ(ε). ForD = 2 and identical
variables, the one-dimensional LDOS has to be convolved with itself:

ρ(2)(E) =
∫ ∞
−∞

ρ(1)(ε)ρ(1)(E − ε) dε.

ForD = 3 the autoconvolution ofρ has to be performed twice. The idea of our approach
is summarized in a graphical form in figure 1. The top row presents the convolution of the
one-dimensional LDOS with itself, producing the corresponding two-dimensional LDOS; as
can be seen, the width of the band is doubled, as its centre remains fixed; the singularities
at the two ends of the one-dimensional curve cancel one another and, combined, produce the
logarithmic singularity in the middle. In the same figure, shown below is the convolution of
the two-dimensional LDOS with the one-dimensional LDOS producing the three-dimensional
result; the width is three times the original. An alternative way to perform convolutions is to
multiply the Fourier transforms and then to take the inverse Fourier transform of the result.
The transform of the LDOS for a simple chain is a zeroth-order Bessel functionJ0, so one
can writeρ(D) = FT(JD0 ) and thus the curves shown in figure 1 are readily produced. The
calculations outlined are rather simple and can be done with almost any mathematical software
such as the Matlab package [10], which we used.
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Figure 1. Top row: a convolution of two one-dimensional LDOS producing a two-dimensional
LDOS; bottom row: a convolution of a two-dimensional and a one-dimensional LDOS producing
a three-dimensional LDOS.

3. Results and discussion

Whenever this way of proceeding is applicable, its output is in perfect agreement with results
produced by other known methods, the main difference being of course in the cost of the
computational power. In order to compare results, we used the cluster approximation relying
on the well known formulaρ = (−1/π) ImG(E + 0i) whereG is the Green function for
the orbitals of the central atom and it is calculated as the inverse ofH − E, H being the
Hamiltonian. The one-electron Hamiltonians with semi-empirical parameters were taken as in
[8]. The resonance integral was taken to be zero while the value for the exchange integral was
typically−1 eV. The size of the system is chosen such as to allow a precision of 1 meV for the
eigenvalues. The checking has been done for the TB model of two- and three-dimensional one-
or two-band simple cubic crystals with first neighbours. An excellent agreement of the curves
produced by direct TB calculations and by convolution is shown in figure 2 for a case with
N = 51. The saving in computational effort is considerable: the matrix for a two-dimensional
structure ofN × N atoms isN times larger than the matrix for the one-dimensional chain
and, as the usual calculations involve inversions, the number of operations is aboutN3 larger.
Typically, the time needed here would be reduced by 2–3 orders of magnitude. For instance on
a PC586/100 MHz it took several hours to obtain the upper curve in figure 2, while the lower
one was produced in just about a minute.

Since the one-dimensional LDOS in the presence of an external electric field is known
[3], there was no problem in constructing the curve for the two-dimensional case. For the two
cases (with a field or without) the analytical expressions are available and here it is possible
to simplify the calculation further. When a fieldγ is applied,ρ = ρ(ε; γ ), but if it is along
thex-axis, the movement would be free for the other directions, so

ρ(1)(ε; 0) = (1/π)/
√

1− ε2

and in this particular case there is an ingenious formula for the convolution:

ρ(2)(E; γ ) = (1/n)
n∑
i=1

ρ(1)(E − εi; γ )
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Figure 2. A model two-dimensional two-band LDOS
obtained by standard TB calculations (above) and by
convolution (below).

whereεi = cos((2i−1)π/(2n)); i = 1, 2, . . . , n [11],ρ(1)(E; γ ) being the solution for a chain
in the presence of an electric field [3]. In figure 3 the two one-dimensional curves are plotted
on the left and the two-dimensional result calculated by direct convolution and by using the
simplified formula is on the right. One can note that the singularity is reproduced better with
the second variant. A further investigation of this way of proceeding is likely to be fruitful;
we hope to pursue this in future work.
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Figure 3. (a) A plot of the one-dimensional LDOS in the presence of a field and without a
field (dash–dot curve); (b) a plot of the corresponding two-dimensional LDOS calculated using a
numerical convolution (above) and the simplified formula (below).
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4. Conclusions

The present work proposes a convolution technique for fast calculation of the LDOS in some
two- and three-dimensional cases. This method produces exact results, while most of the
previous accelerated computational schemes rely on converging iterations. It is applicable only
when the Hamiltonians are separable, which is of course a severe limitation. A more detailed
consideration of transforms which might produce their full or partial separation would allow
one to delineate more clearly the scope of its possible utilization. Developing further the result
of Davisonet al [3] has provided an example of its usefulness.
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